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Quantum Stationary State of Class A Bianchi Universe 
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Padmanabhan derived a differential equation for the stationary state for the class 
A Bianchi model and obtained some approximate solutions. Here we reduce the 
differential equation to a standard, well-known, solvable linear differential 
equation and indicate some exact explicit particular solutions. 

1. INTRODUCTION 

Padmanabhan (1984) obtained the stationary slate equation for the 
class A Bianchi model as given by 

h 2 (  02 0 2 )  h2 O2l/-t 
- 4 q  2 ~u21+-~u~ Oq 4 0 q  2 c q 2 / 3 e x p ( - c a u l ) ~ b = E r  (1.1) 

where ],,2 
u , =  ~ ~(1-3h) [j31+ (-3h)'/2j32] 

(3),/2[3 ]1/2 
u2 = ~ ~(1-3h) [(-3h)1/2/31- f12] 

q = e 3x/2 (1.2) 

=(3"~'/22A2(3h-1) 
C l ~k 8,] h 

c2=\3/ L3(1-3h)J 
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Here h is the Binachi parameter, A is a constant,/3~,/32, and h are functions 
of time, and ~0(h,/3~,/32, t) is the wave function. One can separate out the 
u2 dependence by assuming 

q,(u,, u2, q)= exp(ikuz)4,(ul, q) 
Then (o(Ul, q) satisfies the equation 

= {4E 2 k2'~ [ 024' 202(o'~-4c'~8/3exp(-c2u,)4, k - ~ q -  ]4, (1.3) 

Padmanabhan (1984) obtained the solutions of equation (1.3) near q = 0. 
In this paper, we shall reduce equation (1.3) to a standard, well-known, 
solvable linear differential equation and indicate some exact explicit par- 
ticular solutions. We hope this will facilitate the study of the physical aspects 
of the problem. 

2. R E D U C T I O N  TO A S T A N D A R D ,  W E L L - K N O W N ,  S O L V A B L E  
LINEAR PARTIAL DIFFERENTIAL E Q U A T I O N  

Let us put r = in q, so that 

49q = (1/q)4,,, q2(oqq = (Or, -- (or (2.1) 

and equation (1.3) becomes 

4c~ 4E 
(-4, .... + 4,~r- 4,~ ) - - ~  exp[-cz( ul -~cz) ] 49 = [-~ exp( 2r) - k214, 

(2.2) 

Putting 

so that 

and 

r = W, U 1 - 8 r / 3 c 2 =  v 

4,., = 4,~, 4, . . . .  =4 ,~o  

(O~ = 4,w - ( 8 / 3 c 2 ) 4 , ~  (2 .3 )  

(orr = (oww -- (16/3C2)4,wv + (64/9C2)4,~ 

we find that equation (2.2) reduces to 

4,ww + ( 9 ~ _  1) 16 

+~c24,~+( k2 4c, -co 4E 2w\ - -~7e  2 - ~ - 7 e  ) 4 , = 0  (2.4) 
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I f  w e  n o w  se t  

we have 

e 2w = x ,  e -c2v : y 
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where 

a4) a4) a% 
P =Ox' q Oy r ' O X  2 

024) 024) 
S - -  t - -  

Ox Oy' Oy 2 

Written in terms of r, s, and t, equation (2.6) reads 

A r + 2 B s + c t  = F 

A = 4 x  2, B=(16/3)xy ,  C = ( 6 4 / 9 - c ~ ) y  

(2.9) 
F = F(x, y, 4)), O4)/Ox O4)/Oy) 

Equation (2.8) is a standard linear partial differential equation and it is 
possible to solve it exactly (Forsyth, 1956; Sommerfeld, 1949). We now 
mention only the important points for the solvability of equation (2.8) for 
certain boundary conditions and the behavior of 4). 

Let us assume that both 4) and the derivative 04)~On of 4) in the direction 
of the normal are prescribed along a curve F in the xy plane. In the theory 
of partial differential equations, the following relations are valid in general, 
and therefore hold on F: 

dp = r dx + s dy (2.10a) 

dq= s dx + t dy (2.10b) 

(2.7) 

(2.8) 

4)w = 2x4)x, 4)ww = 4x24)x~ + 4x4)x 

4)v = r Y4)y ,  4)vv = r 22y2 4)yy -[- r y4)y  (2.5) 

4)w~ = -2c2xy4)xy 

Substituting (2.5) in equation (2.4), we obtain 

y 4),, +-~xy4)x, -2x4)x 

+(4_~_c~)y4)y+[ 2 4E 4c, \ kk  - ~ ' ~ x - - ~ y )  4)=O (2.6) 

We now introduce the following notations, which are common in the 
theory of partial differential equations: 
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Now, since p and q are known on F, equations (2.8), (2.10a) and (2.10b) 
constitute three linear equations for the determination of r, s, and t on the 
curve F. The determinant of the system is 

A 2B C 

A= dx dy 0 = A d y 2 - 2 B d x d y + C d x  2 
0 dx dy 

Only when this determinant A is different from zero can r, s, and t be 
calculated from (2.8), (2.10a), and (2.10b). However, in general, two direc- 
tions dy, dx exist for every point (x, y) for which this is not the case. 
Therefore two (real or complex conjugate) families of curves exist on which 
A = 0 and which according to Monge are called characteristics (Forsyth, 
1956; Sommerfeld, 1949). Along each of these characteristics it is in general 
impossible to solve r, s, and t in terms of  r p, and q. We shall therefore 
demand a necessary condition for solvability of equation (2.8) that F shall 
be nowhere tangent to a characteristic. The opposite case, in which F 
coincides with any of the characteristics, is connected with D'Alembert 's 
solution. 

Now we turn to the determination of the characteristics of equations 
(2.10a) and (2.10b). The equation of the characteristics is 

A dy2- 2B dx dy + C dx 2 

= {A dy - [B + (B 2 - AC) 1/2] dx} 

x {A dy - [S - (8  2 - AC) '/2] dx} 

= 0  (2.11) 

The appropriate discriminant for our problem is 

B2-  AC = (1--~ xy) 2-gx2(6--~- c~) y2=gxZ y2c~ (2.12) 

where c22 = 6 4 / 9 ( 1 - 3 h ) .  Now, from the value of the discriminant we will 
obtain very interesting information regarding the solution r which is our 
main interest. 

(a) When c22 > 0 (i.e., the value of the Bianchi parameter is less than 
1/3), then the discriminant is real and equation (2.8) is of hyperbolic type 
in which the characteristics form two distinct families. For the hyperbolic 
equation there is no solution with point singularities, but it is well known 
that there are fundamental solutions which are singular all along the charac- 
teristics. Thus, the solution ~b is not well behaved along the characteristics. 

(b) When c~<0 (i.e., the value of the Bianchi parameter is greater 
than 1/3), then B 2 - A C  <0,  and thus equation (2.8) becomes of elliptic 
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type in which the characteristics are conjugate complex.  The solution 4, is 
in general not  well behaved.  

(c) When  2 c2 = 0, then B 2 - A C  = 0, and thus equat ion (2.8) becomes  
o f  parabol ic  type in which only one real family o f  characteristics exists. 
The solution ~b is an analytic funct ion o f  x and y. N o w  the value o f  the 
Bianchi parameter  become infinity, which seems unphysical .  

3. S O M E  EXACT E X P L I C I T  P A R T I C U L A R  S O L U T I O N S  

Let 

~b = ~ a,,,,x my " (3.1) 

be a solution o f  equat ion (2.6). Then one can obtain the relation 

am,. 2m+-~n - 6 m - - ~ n  - c ~ n 2 + k  2 

4E  4cl 
h-~am-l.n h2 am, n-I = 0  (3.2) 

Case 1. We choose  the values o f  m and n, say m = mo and n = no, in 
such a way  that 

8 2 8 2 2 k 2 ( 2 m o - 3 n o )  - 6 m o - ~ n o - c 2 n o +  = 0  (3.5) 

We assume that 

am,~ = 0  

am,~ = 0  

for m + n < m o + n o  

for m + n = mo + no 

but  m # too, n # no 
(3.4) 

a too, no # 0 

Under  the assumptions  (3.3) and (3.4), one can uniquely determine 
the nonvanishing  coefficients a,,,n for m + n > m0 + no, i.e., the nonvanishing  
coefficients am, n for m + n > too+no as given by amo+l,no and a . . . . .  +1 (for 
m + n  = t o o + n o + l ) ;  amo+2,no, amo+~,,o+l, amo,no+2 (for m + n  = t o o + n o + 2 ) ;  
amo+3 .... amo+2,no+l, amo+l,,o+2, and arno,no+3 (for m + n = too+ no+3) ,  and  so 
on. It is to be noted that  all these nonvanishing  coefficients are quite 
consistent. Thus,  under  the assumptions (3.3) and (3.4), the solution o f  
equat ion (1.3) is given by 

dp = amo,,~oXm~176 amo+l,noXrn~ y n~ 

--1- arno, no+lXmoyno +1 q- amo+2,noXmO+2 yno 

+ - . -  (3.5) 
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where 
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x = q  2, y = e x p [ - c 2 ( u l - ~ e 2 q )  ] (3.6) 

In part icular ,  if one sets mo=  1, no = O, then the assumpt ions  (3.3) and  
(3.4) become  

k = 4 - 2  

am,n=0 f o r m + n < l  

a,,,n = 0 for m + n = 1 (3.7) 

a l ,  0 # 0 

Under  the assumpt ion  (3.7), the solut ion of  equat ion  (1.3) is given by 

~b = al,oX + a2,oX 2 + alaxy + a3,o x3 q- a2,1x2y 

-1- a l , 2 x y  2 q- a 4 , 0 x 4 +  �9 �9 �9 (3.8) 

where  

and  

[ ( 8lnq l 
x = q  2, y = e x p  --C 2 Ul - - "~-C2/ / . .  ] (3.9) 

4 C l  

a 1 3  = h 2 ( 1 3 6 / 9 -  c~) a l ' ~  

2E 
a2 ,  o = ~ a 1,o 

2E  2 
a3 ,o  = 15h4al,o, etc. 

are nonvanish ing  coefficients and are all quite consistent.  

Case 2. We first consider  equat ion (3.2) in the form 

(2m + ~n)2 _ 6m - ~n - c~n 2 + k 2 

I f  we set m = 4 r  and n = - 3 r ,  where r is any  posit ive integer,  the above  
express ion becomes  

k 2 - 1 6 r - 9 c ~ r 2 < O  if  c 2 - 0  

We now choose  the values  of  m and n, say rn = m o =  4ro and n = no = - 3 r o ,  
ro being a posit ive integer,  in such a way that  k 2=  16ro+9C~ro (c~>-O). 

N o w  proceeding  exact ly as in case 1, one can also obtain  a series 
solut ion o f  equat ion (1.3). 
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4. CONCLUSION 

In summary, we have reduced the stationary state equation (1.3) for 
class A Bianchi model obtained by Padmanabhan (1984) to a standard, 
well-known, solvable linear partial differential equation given by (2.6), i.e., 
given by (2.8). We have mentioned only the important points for the 
solvability of equation (2.8) for certain boundary conditions and behavior 
of ~b. We have also presented some exact explict particular solutions of 
equation (1.3) given by (3.5), (3.6) and (3.8), (3.9) in case 1, and we have 
noted another type of series solution of equation (1.3) in case 2. We hope 
the solutions given here will facilitate the study of the physical aspects of 
the problem. 
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